MakeItFrom.com
Menu (ESC)

AWS ERNiCrMo-3 vs. 358.0 Aluminum

AWS ERNiCrMo-3 belongs to the nickel alloys classification, while 358.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ERNiCrMo-3 and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 34
3.5 to 6.0
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 870
350 to 370

Thermal Properties

Latent Heat of Fusion, J/g 330
520
Melting Completion (Liquidus), °C 1480
600
Melting Onset (Solidus), °C 1430
560
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
36
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 80
19
Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 14
8.7
Embodied Energy, MJ/kg 190
160
Embodied Water, L/kg 290
1090

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 28
37 to 39
Strength to Weight: Bending, points 24
42 to 44
Thermal Diffusivity, mm2/s 2.8
63
Thermal Shock Resistance, points 25
16 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.4
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 20 to 23
0 to 0.2
Copper (Cu), % 0 to 0.5
0 to 0.2
Iron (Fe), % 0 to 5.0
0 to 0.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 0.5
0 to 0.2
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 58 to 68.9
0
Niobium (Nb), % 3.2 to 4.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
7.6 to 8.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.4
0.1 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15