MakeItFrom.com
Menu (ESC)

AWS ERTi-1 vs. CC754S Brass

AWS ERTi-1 belongs to the titanium alloys classification, while CC754S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-1 and the bottom bar is CC754S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 24
11
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 240
320
Tensile Strength: Yield (Proof), MPa 170
160

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 1670
830
Melting Onset (Solidus), °C 1620
780
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
95
Thermal Expansion, µm/m-K 8.7
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
27
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
30

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 510
47
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
29
Resilience: Unit (Modulus of Resilience), kJ/m3 140
130
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 15
11
Strength to Weight: Bending, points 19
13
Thermal Diffusivity, mm2/s 8.7
31
Thermal Shock Resistance, points 19
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
57 to 63
Hydrogen (H), % 0 to 0.0050
0
Iron (Fe), % 0 to 0.080
0 to 0.7
Lead (Pb), % 0
0.5 to 2.5
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.012
0
Oxygen (O), % 0.030 to 0.1
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 99.773 to 99.97
0
Zinc (Zn), % 0
30.2 to 42.5