MakeItFrom.com
Menu (ESC)

AWS ERTi-1 vs. C82500 Copper

AWS ERTi-1 belongs to the titanium alloys classification, while C82500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-1 and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 24
1.0 to 20
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
45
Tensile Strength: Ultimate (UTS), MPa 240
550 to 1100
Tensile Strength: Yield (Proof), MPa 170
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 320
280
Melting Completion (Liquidus), °C 1670
980
Melting Onset (Solidus), °C 1620
860
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
130
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
20
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
21

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 31
10
Embodied Energy, MJ/kg 510
160
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 140
400 to 4000
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 15
18 to 35
Strength to Weight: Bending, points 19
17 to 27
Thermal Diffusivity, mm2/s 8.7
38
Thermal Shock Resistance, points 19
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0
95.3 to 97.8
Hydrogen (H), % 0 to 0.0050
0
Iron (Fe), % 0 to 0.080
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.012
0
Oxygen (O), % 0.030 to 0.1
0
Silicon (Si), % 0
0.2 to 0.35
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 99.773 to 99.97
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5