MakeItFrom.com
Menu (ESC)

AWS ERTi-1 vs. N08925 Stainless Steel

AWS ERTi-1 belongs to the titanium alloys classification, while N08925 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-1 and the bottom bar is N08925 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 24
45
Fatigue Strength, MPa 120
310
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
80
Tensile Strength: Ultimate (UTS), MPa 240
680
Tensile Strength: Yield (Proof), MPa 170
340

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1670
1460
Melting Onset (Solidus), °C 1620
1410
Specific Heat Capacity, J/kg-K 540
460
Thermal Conductivity, W/m-K 21
13
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
33
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 31
6.2
Embodied Energy, MJ/kg 510
84
Embodied Water, L/kg 110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
250
Resilience: Unit (Modulus of Resilience), kJ/m3 140
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 15
23
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 8.7
3.5
Thermal Shock Resistance, points 19
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
0.8 to 1.5
Hydrogen (H), % 0 to 0.0050
0
Iron (Fe), % 0 to 0.080
42.7 to 50.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0 to 0.012
0.1 to 0.2
Oxygen (O), % 0.030 to 0.1
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 99.773 to 99.97
0