MakeItFrom.com
Menu (ESC)

AWS ERTi-12 vs. C66200 Brass

AWS ERTi-12 belongs to the titanium alloys classification, while C66200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-12 and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 12
8.0 to 15
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 480
450 to 520
Tensile Strength: Yield (Proof), MPa 340
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 420
200
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1670
1070
Melting Onset (Solidus), °C 1620
1030
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
150
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
35
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
36

Otherwise Unclassified Properties

Base Metal Price, % relative 37
29
Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 31
2.7
Embodied Energy, MJ/kg 510
43
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 550
760 to 1030
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 30
14 to 17
Strength to Weight: Bending, points 30
15 to 16
Thermal Diffusivity, mm2/s 8.7
45
Thermal Shock Resistance, points 37
16 to 18

Alloy Composition

Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
86.6 to 91
Hydrogen (H), % 0 to 0.0080
0
Iron (Fe), % 0 to 0.15
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0.060 to 0.090
0.3 to 1.0
Nitrogen (N), % 0 to 0.015
0
Oxygen (O), % 0.080 to 0.16
0
Phosphorus (P), % 0
0.050 to 0.2
Tin (Sn), % 0
0.2 to 0.7
Titanium (Ti), % 99.147 to 99.66
0
Zinc (Zn), % 0
6.5 to 12.9
Residuals, % 0
0 to 0.5