MakeItFrom.com
Menu (ESC)

AWS ERTi-12 vs. C67400 Bronze

AWS ERTi-12 belongs to the titanium alloys classification, while C67400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-12 and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 12
22 to 28
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 480
480 to 610
Tensile Strength: Yield (Proof), MPa 340
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
130
Melting Completion (Liquidus), °C 1670
890
Melting Onset (Solidus), °C 1620
870
Specific Heat Capacity, J/kg-K 540
400
Thermal Conductivity, W/m-K 21
100
Thermal Expansion, µm/m-K 8.7
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
23
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
26

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 510
48
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 52
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 550
300 to 660
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 30
17 to 22
Strength to Weight: Bending, points 30
17 to 20
Thermal Diffusivity, mm2/s 8.7
32
Thermal Shock Resistance, points 37
16 to 20

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
57 to 60
Hydrogen (H), % 0 to 0.0080
0
Iron (Fe), % 0 to 0.15
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0
2.0 to 3.5
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0.060 to 0.090
0 to 0.25
Nitrogen (N), % 0 to 0.015
0
Oxygen (O), % 0.080 to 0.16
0
Silicon (Si), % 0
0.5 to 1.5
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 99.147 to 99.66
0
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0
0 to 0.5