MakeItFrom.com
Menu (ESC)

AWS ERTi-2 vs. R58150 Titanium

Both AWS ERTi-2 and R58150 titanium are titanium alloys. They have 85% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-2 and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 20
13
Fatigue Strength, MPa 190
330
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
52
Tensile Strength: Ultimate (UTS), MPa 340
770
Tensile Strength: Yield (Proof), MPa 280
550

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 320
320
Melting Completion (Liquidus), °C 1670
1760
Melting Onset (Solidus), °C 1620
1700
Specific Heat Capacity, J/kg-K 540
500
Thermal Expansion, µm/m-K 8.7
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 37
48
Density, g/cm3 4.5
5.4
Embodied Carbon, kg CO2/kg material 31
31
Embodied Energy, MJ/kg 510
480
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
94
Resilience: Unit (Modulus of Resilience), kJ/m3 360
1110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
32
Strength to Weight: Axial, points 21
40
Strength to Weight: Bending, points 24
35
Thermal Shock Resistance, points 27
48

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Hydrogen (H), % 0 to 0.0080
0 to 0.015
Iron (Fe), % 0 to 0.12
0 to 0.1
Molybdenum (Mo), % 0
14 to 16
Nitrogen (N), % 0 to 0.015
0 to 0.050
Oxygen (O), % 0.080 to 0.16
0 to 0.2
Titanium (Ti), % 99.667 to 99.92
83.5 to 86