MakeItFrom.com
Menu (ESC)

AWS ERTi-5 vs. AWS ER100S-1

AWS ERTi-5 belongs to the titanium alloys classification, while AWS ER100S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-5 and the bottom bar is AWS ER100S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 10
18
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 900
770
Tensile Strength: Yield (Proof), MPa 830
700

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
49
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.6
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.8
Embodied Energy, MJ/kg 610
24
Embodied Water, L/kg 200
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87
130
Resilience: Unit (Modulus of Resilience), kJ/m3 3250
1290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 56
27
Strength to Weight: Bending, points 46
24
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 63
23

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.1
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.22
93.5 to 96.9
Manganese (Mn), % 0
1.3 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0
1.4 to 2.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.12 to 0.2
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 88.2 to 90.9
0 to 0.1
Vanadium (V), % 3.5 to 4.5
0 to 0.050
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5