MakeItFrom.com
Menu (ESC)

AWS ERTi-5 vs. AWS ER70S-A1

AWS ERTi-5 belongs to the titanium alloys classification, while AWS ER70S-A1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-5 and the bottom bar is AWS ER70S-A1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 10
22
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 900
590
Tensile Strength: Yield (Proof), MPa 830
450

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
50
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.5
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.5
Embodied Energy, MJ/kg 610
20
Embodied Water, L/kg 200
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3250
540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 56
21
Strength to Weight: Bending, points 46
20
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 63
17

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.050
0 to 0.12
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.22
96.1 to 99.3
Manganese (Mn), % 0
0 to 1.3
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.12 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.3 to 0.7
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 88.2 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0
0 to 0.5