MakeItFrom.com
Menu (ESC)

AWS ERTi-7 vs. C17510 Copper

AWS ERTi-7 belongs to the titanium alloys classification, while C17510 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-7 and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 20
5.4 to 37
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 340
310 to 860
Tensile Strength: Yield (Proof), MPa 280
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 320
220
Melting Completion (Liquidus), °C 1670
1070
Melting Onset (Solidus), °C 1620
1030
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
210
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
23 to 54

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 47
4.2
Embodied Energy, MJ/kg 800
65
Embodied Water, L/kg 470
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 360
64 to 2410
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 21
9.7 to 27
Strength to Weight: Bending, points 24
11 to 23
Thermal Diffusivity, mm2/s 8.8
60
Thermal Shock Resistance, points 26
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.030
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
95.9 to 98.4
Hydrogen (H), % 0 to 0.0080
0
Iron (Fe), % 0 to 0.12
0 to 0.1
Nickel (Ni), % 0
1.4 to 2.2
Nitrogen (N), % 0 to 0.015
0
Oxygen (O), % 0.080 to 0.16
0
Palladium (Pd), % 0.12 to 0.25
0
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 99.417 to 99.8
0
Residuals, % 0
0 to 0.5