MakeItFrom.com
Menu (ESC)

AWS ERTi-7 vs. C49300 Brass

AWS ERTi-7 belongs to the titanium alloys classification, while C49300 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-7 and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 20
4.5 to 20
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 340
430 to 520
Tensile Strength: Yield (Proof), MPa 280
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 1670
880
Melting Onset (Solidus), °C 1620
840
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 21
88
Thermal Expansion, µm/m-K 8.7
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
15
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
17

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 47
3.0
Embodied Energy, MJ/kg 800
50
Embodied Water, L/kg 470
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 360
220 to 800
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 21
15 to 18
Strength to Weight: Bending, points 24
16 to 18
Thermal Diffusivity, mm2/s 8.8
29
Thermal Shock Resistance, points 26
14 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
58 to 62
Hydrogen (H), % 0 to 0.0080
0
Iron (Fe), % 0 to 0.12
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.030
Nickel (Ni), % 0
0 to 1.5
Nitrogen (N), % 0 to 0.015
0
Oxygen (O), % 0.080 to 0.16
0
Palladium (Pd), % 0.12 to 0.25
0
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
1.0 to 1.8
Titanium (Ti), % 99.417 to 99.8
0
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5