MakeItFrom.com
Menu (ESC)

AWS ERTi-7 vs. C90900 Bronze

AWS ERTi-7 belongs to the titanium alloys classification, while C90900 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-7 and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 340
280
Tensile Strength: Yield (Proof), MPa 280
140

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1670
980
Melting Onset (Solidus), °C 1620
820
Specific Heat Capacity, J/kg-K 540
360
Thermal Conductivity, W/m-K 21
65
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
11

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 47
3.9
Embodied Energy, MJ/kg 800
64
Embodied Water, L/kg 470
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
35
Resilience: Unit (Modulus of Resilience), kJ/m3 360
89
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 21
8.8
Strength to Weight: Bending, points 24
11
Thermal Diffusivity, mm2/s 8.8
21
Thermal Shock Resistance, points 26
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
86 to 89
Hydrogen (H), % 0 to 0.0080
0
Iron (Fe), % 0 to 0.12
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.015
0
Oxygen (O), % 0.080 to 0.16
0
Palladium (Pd), % 0.12 to 0.25
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
12 to 14
Titanium (Ti), % 99.417 to 99.8
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6