MakeItFrom.com
Menu (ESC)

AZ31B Magnesium vs. EN 1.4537 Stainless Steel

AZ31B magnesium belongs to the magnesium alloys classification, while EN 1.4537 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31B magnesium and the bottom bar is EN 1.4537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 5.6 to 12
42
Fatigue Strength, MPa 100 to 120
290
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
80
Shear Strength, MPa 130 to 160
480
Tensile Strength: Ultimate (UTS), MPa 240 to 270
700
Tensile Strength: Yield (Proof), MPa 120 to 180
330

Thermal Properties

Latent Heat of Fusion, J/g 350
310
Maximum Temperature: Mechanical, °C 150
1100
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 100
14
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
34
Density, g/cm3 1.7
8.1
Embodied Carbon, kg CO2/kg material 23
6.1
Embodied Energy, MJ/kg 160
84
Embodied Water, L/kg 970
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 25
240
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 370
270
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
24
Strength to Weight: Axial, points 39 to 44
24
Strength to Weight: Bending, points 50 to 55
22
Thermal Diffusivity, mm2/s 62
3.7
Thermal Shock Resistance, points 14 to 16
15

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0
Calcium (Ca), % 0 to 0.040
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
1.0 to 2.0
Iron (Fe), % 0 to 0.050
36.3 to 46.1
Magnesium (Mg), % 93.6 to 97.1
0
Manganese (Mn), % 0.050 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
4.7 to 5.7
Nickel (Ni), % 0 to 0.0050
24 to 27
Nitrogen (N), % 0
0.17 to 0.25
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0