MakeItFrom.com
Menu (ESC)

AZ31B Magnesium vs. Grade Ti-Pd16 Titanium

AZ31B magnesium belongs to the magnesium alloys classification, while grade Ti-Pd16 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31B magnesium and the bottom bar is grade Ti-Pd16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 5.6 to 12
17
Fatigue Strength, MPa 100 to 120
200
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 17
40
Tensile Strength: Ultimate (UTS), MPa 240 to 270
390
Tensile Strength: Yield (Proof), MPa 120 to 180
310

Thermal Properties

Latent Heat of Fusion, J/g 350
420
Maximum Temperature: Mechanical, °C 150
320
Melting Completion (Liquidus), °C 600
1660
Melting Onset (Solidus), °C 600
1610
Specific Heat Capacity, J/kg-K 990
540
Thermal Conductivity, W/m-K 100
22
Thermal Expansion, µm/m-K 26
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 95
7.1

Otherwise Unclassified Properties

Density, g/cm3 1.7
4.5
Embodied Carbon, kg CO2/kg material 23
36
Embodied Energy, MJ/kg 160
600
Embodied Water, L/kg 970
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 25
62
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 370
440
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 70
35
Strength to Weight: Axial, points 39 to 44
24
Strength to Weight: Bending, points 50 to 55
26
Thermal Diffusivity, mm2/s 62
8.9
Thermal Shock Resistance, points 14 to 16
30

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0
Calcium (Ca), % 0 to 0.040
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.050
0 to 0.3
Magnesium (Mg), % 93.6 to 97.1
0
Manganese (Mn), % 0.050 to 1.0
0
Nickel (Ni), % 0 to 0.0050
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.1
0
Titanium (Ti), % 0
98.8 to 99.96
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0
0 to 0.4