MakeItFrom.com
Menu (ESC)

AZ31B Magnesium vs. C70400 Copper-nickel

AZ31B magnesium belongs to the magnesium alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31B magnesium and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
120
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
45
Tensile Strength: Ultimate (UTS), MPa 240 to 270
300 to 310
Tensile Strength: Yield (Proof), MPa 120 to 180
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 350
210
Maximum Temperature: Mechanical, °C 150
210
Melting Completion (Liquidus), °C 600
1120
Melting Onset (Solidus), °C 600
1060
Specific Heat Capacity, J/kg-K 990
390
Thermal Conductivity, W/m-K 100
64
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
14
Electrical Conductivity: Equal Weight (Specific), % IACS 95
14

Otherwise Unclassified Properties

Base Metal Price, % relative 12
32
Density, g/cm3 1.7
8.9
Embodied Carbon, kg CO2/kg material 23
3.0
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 970
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 370
38 to 220
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 70
19
Strength to Weight: Axial, points 39 to 44
9.3 to 9.8
Strength to Weight: Bending, points 50 to 55
11 to 12
Thermal Diffusivity, mm2/s 62
18
Thermal Shock Resistance, points 14 to 16
10 to 11

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0
Calcium (Ca), % 0 to 0.040
0
Copper (Cu), % 0 to 0.050
89.8 to 93.6
Iron (Fe), % 0 to 0.050
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 93.6 to 97.1
0
Manganese (Mn), % 0.050 to 1.0
0.3 to 0.8
Nickel (Ni), % 0 to 0.0050
4.8 to 6.2
Silicon (Si), % 0 to 0.1
0
Zinc (Zn), % 0.5 to 1.5
0 to 1.0
Residuals, % 0
0 to 0.5