MakeItFrom.com
Menu (ESC)

AZ31B Magnesium vs. S35135 Stainless Steel

AZ31B magnesium belongs to the magnesium alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31B magnesium and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.6 to 12
34
Fatigue Strength, MPa 100 to 120
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
79
Shear Strength, MPa 130 to 160
390
Tensile Strength: Ultimate (UTS), MPa 240 to 270
590
Tensile Strength: Yield (Proof), MPa 120 to 180
230

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 150
1100
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 990
470
Thermal Expansion, µm/m-K 26
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 1.7
8.1
Embodied Carbon, kg CO2/kg material 23
6.8
Embodied Energy, MJ/kg 160
94
Embodied Water, L/kg 970
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 25
160
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 370
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
24
Strength to Weight: Axial, points 39 to 44
20
Strength to Weight: Bending, points 50 to 55
19
Thermal Shock Resistance, points 14 to 16
13

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0
Calcium (Ca), % 0 to 0.040
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 0 to 0.050
0 to 0.75
Iron (Fe), % 0 to 0.050
28.3 to 45
Magnesium (Mg), % 93.6 to 97.1
0
Manganese (Mn), % 0.050 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0 to 0.0050
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.4 to 1.0
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0