MakeItFrom.com
Menu (ESC)

AZ31C Magnesium vs. EN 1.4372 Stainless Steel

AZ31C magnesium belongs to the magnesium alloys classification, while EN 1.4372 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31C magnesium and the bottom bar is EN 1.4372 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 12
47
Fatigue Strength, MPa 150
330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
77
Shear Strength, MPa 130
560
Tensile Strength: Ultimate (UTS), MPa 260
790
Tensile Strength: Yield (Proof), MPa 200
350

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Maximum Temperature: Mechanical, °C 110
880
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 23
2.6
Embodied Energy, MJ/kg 160
38
Embodied Water, L/kg 970
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
310
Resilience: Unit (Modulus of Resilience), kJ/m3 440
320
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
25
Strength to Weight: Axial, points 42
29
Strength to Weight: Bending, points 53
25
Thermal Diffusivity, mm2/s 74
4.0
Thermal Shock Resistance, points 16
17

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
67.5 to 75
Magnesium (Mg), % 93.4 to 97
0
Manganese (Mn), % 0.15 to 1.0
5.5 to 7.5
Nickel (Ni), % 0 to 0.030
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0