MakeItFrom.com
Menu (ESC)

AZ31C Magnesium vs. EN 2.4650 Nickel

AZ31C magnesium belongs to the magnesium alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31C magnesium and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 12
34
Fatigue Strength, MPa 150
480
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
80
Shear Strength, MPa 130
730
Tensile Strength: Ultimate (UTS), MPa 260
1090
Tensile Strength: Yield (Proof), MPa 200
650

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 110
1010
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 550
1350
Specific Heat Capacity, J/kg-K 990
450
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
80
Density, g/cm3 1.7
8.5
Embodied Carbon, kg CO2/kg material 23
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 970
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
320
Resilience: Unit (Modulus of Resilience), kJ/m3 440
1030
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 70
23
Strength to Weight: Axial, points 42
36
Strength to Weight: Bending, points 53
28
Thermal Diffusivity, mm2/s 74
3.1
Thermal Shock Resistance, points 16
33

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0
0 to 0.7
Magnesium (Mg), % 93.4 to 97
0
Manganese (Mn), % 0.15 to 1.0
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0 to 0.030
46.9 to 54.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.0070
Titanium (Ti), % 0
1.9 to 2.4
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0