MakeItFrom.com
Menu (ESC)

AZ31C Magnesium vs. N06060 Nickel

AZ31C magnesium belongs to the magnesium alloys classification, while N06060 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31C magnesium and the bottom bar is N06060 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 12
45
Fatigue Strength, MPa 150
230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
82
Shear Strength, MPa 130
490
Tensile Strength: Ultimate (UTS), MPa 260
700
Tensile Strength: Yield (Proof), MPa 200
270

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 110
980
Melting Completion (Liquidus), °C 600
1510
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 990
430
Thermal Expansion, µm/m-K 26
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
65
Density, g/cm3 1.7
8.7
Embodied Carbon, kg CO2/kg material 23
12
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 970
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
250
Resilience: Unit (Modulus of Resilience), kJ/m3 440
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
23
Strength to Weight: Axial, points 42
22
Strength to Weight: Bending, points 53
20
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0 to 0.1
0.25 to 1.3
Iron (Fe), % 0
0 to 14
Magnesium (Mg), % 93.4 to 97
0
Manganese (Mn), % 0.15 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
12 to 14
Nickel (Ni), % 0 to 0.030
54 to 60
Niobium (Nb), % 0
0.5 to 1.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tungsten (W), % 0
0.25 to 1.3
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0