MakeItFrom.com
Menu (ESC)

AZ31C Magnesium vs. S44660 Stainless Steel

AZ31C magnesium belongs to the magnesium alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31C magnesium and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 12
20
Fatigue Strength, MPa 150
330
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 17
81
Shear Strength, MPa 130
410
Tensile Strength: Ultimate (UTS), MPa 260
660
Tensile Strength: Yield (Proof), MPa 200
510

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 110
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
21
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 23
4.3
Embodied Energy, MJ/kg 160
61
Embodied Water, L/kg 970
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
120
Resilience: Unit (Modulus of Resilience), kJ/m3 440
640
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 70
25
Strength to Weight: Axial, points 42
24
Strength to Weight: Bending, points 53
22
Thermal Diffusivity, mm2/s 74
4.5
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 2.4 to 3.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
60.4 to 71
Magnesium (Mg), % 93.4 to 97
0
Manganese (Mn), % 0.15 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.030
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0