MakeItFrom.com
Menu (ESC)

AZ61A Magnesium vs. EN 1.4806 Stainless Steel

AZ61A magnesium belongs to the magnesium alloys classification, while EN 1.4806 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ61A magnesium and the bottom bar is EN 1.4806 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 11
6.8
Fatigue Strength, MPa 130
120
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
75
Tensile Strength: Ultimate (UTS), MPa 280
470
Tensile Strength: Yield (Proof), MPa 170
250

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 120
1000
Melting Completion (Liquidus), °C 600
1380
Melting Onset (Solidus), °C 530
1340
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 79
12
Thermal Expansion, µm/m-K 27
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 62
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 23
5.4
Embodied Energy, MJ/kg 160
76
Embodied Water, L/kg 980
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
27
Resilience: Unit (Modulus of Resilience), kJ/m3 310
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 46
16
Strength to Weight: Bending, points 56
17
Thermal Diffusivity, mm2/s 47
3.1
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 5.5 to 7.2
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
40.4 to 48.7
Magnesium (Mg), % 90.3 to 93.9
0
Manganese (Mn), % 0.15 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.0050
34 to 36
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.4 to 1.5
0
Residuals, % 0 to 0.3
0