MakeItFrom.com
Menu (ESC)

AZ61A Magnesium vs. C92800 Bronze

AZ61A magnesium belongs to the magnesium alloys classification, while C92800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ61A magnesium and the bottom bar is C92800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
100
Elongation at Break, % 11
1.0
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 17
37
Tensile Strength: Ultimate (UTS), MPa 280
280
Tensile Strength: Yield (Proof), MPa 170
210

Thermal Properties

Latent Heat of Fusion, J/g 350
170
Maximum Temperature: Mechanical, °C 120
140
Melting Completion (Liquidus), °C 600
960
Melting Onset (Solidus), °C 530
820
Specific Heat Capacity, J/kg-K 990
350
Thermal Expansion, µm/m-K 27
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 62
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 1.7
8.7
Embodied Carbon, kg CO2/kg material 23
4.1
Embodied Energy, MJ/kg 160
67
Embodied Water, L/kg 980
430

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 310
210
Stiffness to Weight: Axial, points 15
6.4
Stiffness to Weight: Bending, points 69
18
Strength to Weight: Axial, points 46
8.8
Strength to Weight: Bending, points 56
11
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 5.5 to 7.2
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 0 to 0.050
78 to 82
Iron (Fe), % 0 to 0.0050
0 to 0.2
Lead (Pb), % 0
4.0 to 6.0
Magnesium (Mg), % 90.3 to 93.9
0
Manganese (Mn), % 0.15 to 0.5
0
Nickel (Ni), % 0 to 0.0050
0 to 0.8
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
15 to 17
Zinc (Zn), % 0.4 to 1.5
0 to 0.8
Residuals, % 0
0 to 0.7