MakeItFrom.com
Menu (ESC)

AZ63A Magnesium vs. AWS ENiCu-7

AZ63A magnesium belongs to the magnesium alloys classification, while AWS ENiCu-7 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ63A magnesium and the bottom bar is AWS ENiCu-7.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
160
Elongation at Break, % 2.2 to 8.0
34
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 18
62
Tensile Strength: Ultimate (UTS), MPa 190 to 270
550

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Melting Completion (Liquidus), °C 610
1270
Melting Onset (Solidus), °C 450
1230
Specific Heat Capacity, J/kg-K 980
430
Thermal Conductivity, W/m-K 52 to 65
21
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12 to 15
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 59 to 74
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
50
Density, g/cm3 1.8
8.7
Embodied Carbon, kg CO2/kg material 22
8.0
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 970
250

Common Calculations

Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 66
21
Strength to Weight: Axial, points 29 to 41
17
Strength to Weight: Bending, points 40 to 51
17
Thermal Diffusivity, mm2/s 29 to 37
5.5
Thermal Shock Resistance, points 11 to 16
18

Alloy Composition

Aluminum (Al), % 5.3 to 6.7
0 to 0.75
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.25
20.6 to 38
Iron (Fe), % 0
0 to 2.5
Magnesium (Mg), % 88.6 to 92.1
0
Manganese (Mn), % 0.15 to 0.35
0 to 4.0
Nickel (Ni), % 0 to 0.010
62 to 69
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 1.0
Zinc (Zn), % 2.5 to 3.5
0
Residuals, % 0
0 to 0.5