MakeItFrom.com
Menu (ESC)

AZ63A Magnesium vs. EN 1.7386 Steel

AZ63A magnesium belongs to the magnesium alloys classification, while EN 1.7386 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ63A magnesium and the bottom bar is EN 1.7386 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 2.2 to 8.0
18 to 21
Fatigue Strength, MPa 76 to 83
170 to 290
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
75
Shear Strength, MPa 110 to 160
340 to 410
Tensile Strength: Ultimate (UTS), MPa 190 to 270
550 to 670
Tensile Strength: Yield (Proof), MPa 81 to 120
240 to 440

Thermal Properties

Latent Heat of Fusion, J/g 350
270
Maximum Temperature: Mechanical, °C 120
600
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 450
1410
Specific Heat Capacity, J/kg-K 980
480
Thermal Conductivity, W/m-K 52 to 65
26
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12 to 15
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 59 to 74
10

Otherwise Unclassified Properties

Base Metal Price, % relative 12
6.5
Density, g/cm3 1.8
7.8
Embodied Carbon, kg CO2/kg material 22
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 970
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7 to 16
92 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 71 to 160
150 to 490
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 66
25
Strength to Weight: Axial, points 29 to 41
20 to 24
Strength to Weight: Bending, points 40 to 51
19 to 22
Thermal Diffusivity, mm2/s 29 to 37
6.9
Thermal Shock Resistance, points 11 to 16
15 to 18

Alloy Composition

Aluminum (Al), % 5.3 to 6.7
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0
86.8 to 90.5
Magnesium (Mg), % 88.6 to 92.1
0
Manganese (Mn), % 0.15 to 0.35
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.010
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0.25 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 2.5 to 3.5
0
Residuals, % 0 to 0.3
0