MakeItFrom.com
Menu (ESC)

AZ80A Magnesium vs. 5383 Aluminum

AZ80A magnesium belongs to the magnesium alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AZ80A magnesium and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
68
Elongation at Break, % 3.9 to 8.5
6.7 to 15
Fatigue Strength, MPa 140 to 170
130 to 200
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 160 to 190
190 to 220
Tensile Strength: Ultimate (UTS), MPa 320 to 340
310 to 370
Tensile Strength: Yield (Proof), MPa 210 to 230
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 350
390
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 490
540
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 77
130
Thermal Expansion, µm/m-K 26
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
29
Electrical Conductivity: Equal Weight (Specific), % IACS 59
97

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 23
9.0
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 990
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 24
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 600
170 to 690
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
50
Strength to Weight: Axial, points 51 to 55
32 to 38
Strength to Weight: Bending, points 60 to 63
38 to 42
Thermal Diffusivity, mm2/s 45
51
Thermal Shock Resistance, points 19 to 20
14 to 16

Alloy Composition

Aluminum (Al), % 7.8 to 9.2
92 to 95.3
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.050
0 to 0.2
Iron (Fe), % 0 to 0.0050
0 to 0.25
Magnesium (Mg), % 89 to 91.9
4.0 to 5.2
Manganese (Mn), % 0.12 to 0.5
0.7 to 1.0
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.1
0 to 0.25
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0.2 to 0.8
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15