MakeItFrom.com
Menu (ESC)

AZ80A Magnesium vs. ACI-ASTM CB7Cu-2 Steel

AZ80A magnesium belongs to the magnesium alloys classification, while ACI-ASTM CB7Cu-2 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ80A magnesium and the bottom bar is ACI-ASTM CB7Cu-2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 3.9 to 8.5
5.7 to 11
Fatigue Strength, MPa 140 to 170
420 to 590
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
75
Tensile Strength: Ultimate (UTS), MPa 320 to 340
960 to 1350
Tensile Strength: Yield (Proof), MPa 210 to 230
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 490
1380
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 77
17
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 59
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 23
2.6
Embodied Energy, MJ/kg 160
38
Embodied Water, L/kg 990
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 24
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 600
1510 to 3600
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 51 to 55
34 to 48
Strength to Weight: Bending, points 60 to 63
28 to 35
Thermal Diffusivity, mm2/s 45
4.6
Thermal Shock Resistance, points 19 to 20
32 to 45

Alloy Composition

Aluminum (Al), % 7.8 to 9.2
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 0 to 0.050
2.5 to 3.2
Iron (Fe), % 0 to 0.0050
73.6 to 79
Magnesium (Mg), % 89 to 91.9
0
Manganese (Mn), % 0.12 to 0.5
0 to 0.7
Nickel (Ni), % 0 to 0.0050
4.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.2 to 0.8
0
Residuals, % 0 to 0.3
0