MakeItFrom.com
Menu (ESC)

AZ80A Magnesium vs. ASTM A387 Grade 91 Class 2

AZ80A magnesium belongs to the magnesium alloys classification, while ASTM A387 grade 91 class 2 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ80A magnesium and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 3.9 to 8.5
20
Fatigue Strength, MPa 140 to 170
330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
75
Shear Strength, MPa 160 to 190
420
Tensile Strength: Ultimate (UTS), MPa 320 to 340
670
Tensile Strength: Yield (Proof), MPa 210 to 230
470

Thermal Properties

Latent Heat of Fusion, J/g 350
270
Maximum Temperature: Mechanical, °C 130
600
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 490
1420
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 77
26
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 59
10

Otherwise Unclassified Properties

Base Metal Price, % relative 12
7.0
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 23
2.6
Embodied Energy, MJ/kg 160
37
Embodied Water, L/kg 990
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 24
120
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 600
580
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 51 to 55
24
Strength to Weight: Bending, points 60 to 63
22
Thermal Diffusivity, mm2/s 45
6.9
Thermal Shock Resistance, points 19 to 20
19

Alloy Composition

Aluminum (Al), % 7.8 to 9.2
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
87.3 to 90.3
Magnesium (Mg), % 89 to 91.9
0
Manganese (Mn), % 0.12 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0 to 0.0050
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0.2 to 0.8
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.3
0