MakeItFrom.com
Menu (ESC)

AZ80A Magnesium vs. CC483K Bronze

AZ80A magnesium belongs to the magnesium alloys classification, while CC483K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ80A magnesium and the bottom bar is CC483K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
110
Elongation at Break, % 3.9 to 8.5
6.4
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
40
Tensile Strength: Ultimate (UTS), MPa 320 to 340
310
Tensile Strength: Yield (Proof), MPa 210 to 230
170

Thermal Properties

Latent Heat of Fusion, J/g 350
190
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
990
Melting Onset (Solidus), °C 490
870
Specific Heat Capacity, J/kg-K 990
370
Thermal Conductivity, W/m-K 77
68
Thermal Expansion, µm/m-K 26
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
10
Electrical Conductivity: Equal Weight (Specific), % IACS 59
10

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 1.7
8.7
Embodied Carbon, kg CO2/kg material 23
3.8
Embodied Energy, MJ/kg 160
62
Embodied Water, L/kg 990
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 24
17
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 600
130
Stiffness to Weight: Axial, points 15
6.9
Stiffness to Weight: Bending, points 69
18
Strength to Weight: Axial, points 51 to 55
9.9
Strength to Weight: Bending, points 60 to 63
12
Thermal Diffusivity, mm2/s 45
21
Thermal Shock Resistance, points 19 to 20
11

Alloy Composition

Aluminum (Al), % 7.8 to 9.2
0 to 0.010
Antimony (Sb), % 0
0 to 0.15
Copper (Cu), % 0 to 0.050
85 to 89
Iron (Fe), % 0 to 0.0050
0 to 0.2
Lead (Pb), % 0
0 to 0.7
Magnesium (Mg), % 89 to 91.9
0
Manganese (Mn), % 0.12 to 0.5
0 to 0.2
Nickel (Ni), % 0 to 0.0050
0 to 2.0
Phosphorus (P), % 0
0 to 0.6
Silicon (Si), % 0 to 0.1
0 to 0.010
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10.5 to 13
Zinc (Zn), % 0.2 to 0.8
0 to 0.5
Residuals, % 0 to 0.3
0