MakeItFrom.com
Menu (ESC)

AZ80A Magnesium vs. C90300 Bronze

AZ80A magnesium belongs to the magnesium alloys classification, while C90300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ80A magnesium and the bottom bar is C90300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
110
Elongation at Break, % 3.9 to 8.5
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
41
Tensile Strength: Ultimate (UTS), MPa 320 to 340
330
Tensile Strength: Yield (Proof), MPa 210 to 230
150

Thermal Properties

Latent Heat of Fusion, J/g 350
190
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
1000
Melting Onset (Solidus), °C 490
850
Specific Heat Capacity, J/kg-K 990
370
Thermal Conductivity, W/m-K 77
75
Thermal Expansion, µm/m-K 26
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
12
Electrical Conductivity: Equal Weight (Specific), % IACS 59
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
33
Density, g/cm3 1.7
8.7
Embodied Carbon, kg CO2/kg material 23
3.4
Embodied Energy, MJ/kg 160
56
Embodied Water, L/kg 990
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 24
59
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 600
110
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 69
18
Strength to Weight: Axial, points 51 to 55
11
Strength to Weight: Bending, points 60 to 63
12
Thermal Diffusivity, mm2/s 45
23
Thermal Shock Resistance, points 19 to 20
12

Alloy Composition

Aluminum (Al), % 7.8 to 9.2
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.050
86 to 89
Iron (Fe), % 0 to 0.0050
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 89 to 91.9
0
Manganese (Mn), % 0.12 to 0.5
0
Nickel (Ni), % 0 to 0.0050
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
7.5 to 9.0
Zinc (Zn), % 0.2 to 0.8
3.0 to 5.0
Residuals, % 0
0 to 0.6