MakeItFrom.com
Menu (ESC)

AZ80A Magnesium vs. C90900 Bronze

AZ80A magnesium belongs to the magnesium alloys classification, while C90900 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ80A magnesium and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
110
Elongation at Break, % 3.9 to 8.5
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
40
Tensile Strength: Ultimate (UTS), MPa 320 to 340
280
Tensile Strength: Yield (Proof), MPa 210 to 230
140

Thermal Properties

Latent Heat of Fusion, J/g 350
190
Maximum Temperature: Mechanical, °C 130
160
Melting Completion (Liquidus), °C 600
980
Melting Onset (Solidus), °C 490
820
Specific Heat Capacity, J/kg-K 990
360
Thermal Conductivity, W/m-K 77
65
Thermal Expansion, µm/m-K 26
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
11
Electrical Conductivity: Equal Weight (Specific), % IACS 59
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 1.7
8.7
Embodied Carbon, kg CO2/kg material 23
3.9
Embodied Energy, MJ/kg 160
64
Embodied Water, L/kg 990
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 24
35
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 600
89
Stiffness to Weight: Axial, points 15
6.8
Stiffness to Weight: Bending, points 69
18
Strength to Weight: Axial, points 51 to 55
8.8
Strength to Weight: Bending, points 60 to 63
11
Thermal Diffusivity, mm2/s 45
21
Thermal Shock Resistance, points 19 to 20
10

Alloy Composition

Aluminum (Al), % 7.8 to 9.2
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.050
86 to 89
Iron (Fe), % 0 to 0.0050
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 89 to 91.9
0
Manganese (Mn), % 0.12 to 0.5
0
Nickel (Ni), % 0 to 0.0050
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
12 to 14
Zinc (Zn), % 0.2 to 0.8
0 to 0.25
Residuals, % 0
0 to 0.6