MakeItFrom.com
Menu (ESC)

AZ80A Magnesium vs. R30556 Alloy

AZ80A magnesium belongs to the magnesium alloys classification, while R30556 alloy belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ80A magnesium and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
210
Elongation at Break, % 3.9 to 8.5
45
Fatigue Strength, MPa 140 to 170
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
81
Shear Strength, MPa 160 to 190
550
Tensile Strength: Ultimate (UTS), MPa 320 to 340
780
Tensile Strength: Yield (Proof), MPa 210 to 230
350

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 490
1330
Specific Heat Capacity, J/kg-K 990
450
Thermal Conductivity, W/m-K 77
11
Thermal Expansion, µm/m-K 26
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 59
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
70
Density, g/cm3 1.7
8.4
Embodied Carbon, kg CO2/kg material 23
8.7
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 990
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 24
290
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 600
290
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
23
Strength to Weight: Axial, points 51 to 55
26
Strength to Weight: Bending, points 60 to 63
22
Thermal Diffusivity, mm2/s 45
2.9
Thermal Shock Resistance, points 19 to 20
18

Alloy Composition

Aluminum (Al), % 7.8 to 9.2
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
21 to 23
Cobalt (Co), % 0
16 to 21
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Magnesium (Mg), % 89 to 91.9
0
Manganese (Mn), % 0.12 to 0.5
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.0050
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0.2 to 0.8
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0.2 to 0.8
0.0010 to 0.1
Residuals, % 0 to 0.3
0