MakeItFrom.com
Menu (ESC)

AZ81A Magnesium vs. 5383 Aluminum

AZ81A magnesium belongs to the magnesium alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AZ81A magnesium and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
85 to 110
Elastic (Young's, Tensile) Modulus, GPa 46
68
Elongation at Break, % 3.0 to 8.8
6.7 to 15
Fatigue Strength, MPa 78 to 80
130 to 200
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 91 to 130
190 to 220
Tensile Strength: Ultimate (UTS), MPa 160 to 240
310 to 370
Tensile Strength: Yield (Proof), MPa 84
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 350
390
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 500
540
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 84
130
Thermal Expansion, µm/m-K 27
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
29
Electrical Conductivity: Equal Weight (Specific), % IACS 65
97

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 23
9.0
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 990
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 17
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 78
170 to 690
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
50
Strength to Weight: Axial, points 26 to 39
32 to 38
Strength to Weight: Bending, points 38 to 50
38 to 42
Thermal Diffusivity, mm2/s 50
51
Thermal Shock Resistance, points 9.1 to 14
14 to 16

Alloy Composition

Aluminum (Al), % 7.0 to 8.1
92 to 95.3
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0
0 to 0.25
Magnesium (Mg), % 89.8 to 92.5
4.0 to 5.2
Manganese (Mn), % 0.13 to 0.35
0.7 to 1.0
Nickel (Ni), % 0 to 0.010
0
Silicon (Si), % 0 to 0.3
0 to 0.25
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0.4 to 1.0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15