MakeItFrom.com
Menu (ESC)

AZ81A Magnesium vs. ACI-ASTM CD3MN Steel

AZ81A magnesium belongs to the magnesium alloys classification, while ACI-ASTM CD3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ81A magnesium and the bottom bar is ACI-ASTM CD3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 3.0 to 8.8
29
Fatigue Strength, MPa 78 to 80
340
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
79
Tensile Strength: Ultimate (UTS), MPa 160 to 240
710
Tensile Strength: Yield (Proof), MPa 84
460

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 130
1060
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 500
1400
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 84
16
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 65
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
18
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 23
3.6
Embodied Energy, MJ/kg 160
50
Embodied Water, L/kg 990
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 17
180
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 78
530
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
25
Strength to Weight: Axial, points 26 to 39
25
Strength to Weight: Bending, points 38 to 50
23
Thermal Diffusivity, mm2/s 50
4.3
Thermal Shock Resistance, points 9.1 to 14
20

Alloy Composition

Aluminum (Al), % 7.0 to 8.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21 to 23.5
Copper (Cu), % 0 to 0.1
0 to 1.0
Iron (Fe), % 0
62.6 to 71.9
Magnesium (Mg), % 89.8 to 92.5
0
Manganese (Mn), % 0.13 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.010
4.5 to 6.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0