MakeItFrom.com
Menu (ESC)

AZ81A Magnesium vs. EN 1.4024 Stainless Steel

AZ81A magnesium belongs to the magnesium alloys classification, while EN 1.4024 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ81A magnesium and the bottom bar is EN 1.4024 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 3.0 to 8.8
15 to 22
Fatigue Strength, MPa 78 to 80
220 to 300
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 91 to 130
370 to 460
Tensile Strength: Ultimate (UTS), MPa 160 to 240
590 to 750
Tensile Strength: Yield (Proof), MPa 84
330 to 510

Thermal Properties

Latent Heat of Fusion, J/g 350
270
Maximum Temperature: Mechanical, °C 130
760
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 500
1400
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 84
30
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 65
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
7.0
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 23
1.9
Embodied Energy, MJ/kg 160
27
Embodied Water, L/kg 990
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 17
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 78
280 to 660
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
25
Strength to Weight: Axial, points 26 to 39
21 to 27
Strength to Weight: Bending, points 38 to 50
20 to 24
Thermal Diffusivity, mm2/s 50
8.1
Thermal Shock Resistance, points 9.1 to 14
21 to 26

Alloy Composition

Aluminum (Al), % 7.0 to 8.1
0
Carbon (C), % 0
0.12 to 0.17
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
83.8 to 87.9
Magnesium (Mg), % 89.8 to 92.5
0
Manganese (Mn), % 0.13 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.010
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0

Comparable Variants