MakeItFrom.com
Menu (ESC)

AZ91A Magnesium vs. AISI 440A Stainless Steel

AZ91A magnesium belongs to the magnesium alloys classification, while AISI 440A stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91A magnesium and the bottom bar is AISI 440A stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 5.0
5.0 to 20
Fatigue Strength, MPa 99
270 to 790
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 140
450 to 1040
Tensile Strength: Ultimate (UTS), MPa 240
730 to 1790
Tensile Strength: Yield (Proof), MPa 160
420 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 360
280
Maximum Temperature: Mechanical, °C 130
760
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 470
1370
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 73
23
Thermal Expansion, µm/m-K 26
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 52
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.0
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 22
2.2
Embodied Energy, MJ/kg 160
31
Embodied Water, L/kg 990
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
87 to 120
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 38
26 to 65
Strength to Weight: Bending, points 49
23 to 43
Thermal Diffusivity, mm2/s 42
6.2
Thermal Shock Resistance, points 14
26 to 65

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
78.4 to 83.4
Magnesium (Mg), % 88.2 to 91.2
0
Manganese (Mn), % 0.13 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.030
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0.35 to 1.0
0