MakeItFrom.com
Menu (ESC)

AZ91A Magnesium vs. EN 1.0490 Steel

AZ91A magnesium belongs to the magnesium alloys classification, while EN 1.0490 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91A magnesium and the bottom bar is EN 1.0490 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
130
Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 5.0
26
Fatigue Strength, MPa 99
210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Shear Strength, MPa 140
280
Tensile Strength: Ultimate (UTS), MPa 240
440
Tensile Strength: Yield (Proof), MPa 160
280

Thermal Properties

Latent Heat of Fusion, J/g 360
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 470
1420
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 73
47
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 52
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.4
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 22
1.6
Embodied Energy, MJ/kg 160
21
Embodied Water, L/kg 990
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
100
Resilience: Unit (Modulus of Resilience), kJ/m3 280
210
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 38
16
Strength to Weight: Bending, points 49
16
Thermal Diffusivity, mm2/s 42
13
Thermal Shock Resistance, points 14
14

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0 to 0.015
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 0 to 0.1
0 to 0.6
Iron (Fe), % 0
96 to 99.55
Magnesium (Mg), % 88.2 to 91.2
0
Manganese (Mn), % 0.13 to 0.5
0.45 to 1.6
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0 to 0.030
0 to 0.35
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.45
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.070
Zinc (Zn), % 0.35 to 1.0
0