MakeItFrom.com
Menu (ESC)

AZ91A Magnesium vs. EN 1.0558 Cast Steel

AZ91A magnesium belongs to the magnesium alloys classification, while EN 1.0558 cast steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91A magnesium and the bottom bar is EN 1.0558 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 5.0
18
Fatigue Strength, MPa 99
230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Tensile Strength: Ultimate (UTS), MPa 240
640
Tensile Strength: Yield (Proof), MPa 160
340

Thermal Properties

Latent Heat of Fusion, J/g 360
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 470
1430
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 73
53
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 52
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
1.7
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 22
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 990
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
99
Resilience: Unit (Modulus of Resilience), kJ/m3 280
300
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 49
21
Thermal Diffusivity, mm2/s 42
14
Thermal Shock Resistance, points 14
20

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
99.935 to 100
Magnesium (Mg), % 88.2 to 91.2
0
Manganese (Mn), % 0.13 to 0.5
0
Nickel (Ni), % 0 to 0.030
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.35 to 1.0
0