MakeItFrom.com
Menu (ESC)

AZ91A Magnesium vs. EN 1.4938 Stainless Steel

AZ91A magnesium belongs to the magnesium alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91A magnesium and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 5.0
16 to 17
Fatigue Strength, MPa 99
390 to 520
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 140
540 to 630
Tensile Strength: Ultimate (UTS), MPa 240
870 to 1030
Tensile Strength: Yield (Proof), MPa 160
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 360
270
Maximum Temperature: Mechanical, °C 130
750
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 470
1420
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 73
30
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 52
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 22
3.3
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 990
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 280
1050 to 1920
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 38
31 to 37
Strength to Weight: Bending, points 49
26 to 29
Thermal Diffusivity, mm2/s 42
8.1
Thermal Shock Resistance, points 14
30 to 35

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
80.5 to 84.8
Magnesium (Mg), % 88.2 to 91.2
0
Manganese (Mn), % 0.13 to 0.5
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.030
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0.35 to 1.0
0