MakeItFrom.com
Menu (ESC)

AZ91A Magnesium vs. S31260 Stainless Steel

AZ91A magnesium belongs to the magnesium alloys classification, while S31260 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91A magnesium and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
260
Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 5.0
23
Fatigue Strength, MPa 99
370
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
80
Shear Strength, MPa 140
500
Tensile Strength: Ultimate (UTS), MPa 240
790
Tensile Strength: Yield (Proof), MPa 160
540

Thermal Properties

Latent Heat of Fusion, J/g 360
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 470
1400
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 73
16
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 52
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
20
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 22
3.9
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 990
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
160
Resilience: Unit (Modulus of Resilience), kJ/m3 280
720
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 38
28
Strength to Weight: Bending, points 49
24
Thermal Diffusivity, mm2/s 42
4.3
Thermal Shock Resistance, points 14
22

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.1
0.2 to 0.8
Iron (Fe), % 0
59.6 to 67.6
Magnesium (Mg), % 88.2 to 91.2
0
Manganese (Mn), % 0.13 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.030
5.5 to 7.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.1 to 0.5
Zinc (Zn), % 0.35 to 1.0
0