MakeItFrom.com
Menu (ESC)

AZ91C Magnesium vs. 5042 Aluminum

AZ91C magnesium belongs to the magnesium alloys classification, while 5042 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AZ91C magnesium and the bottom bar is 5042 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
68
Elongation at Break, % 2.3 to 7.9
1.1 to 3.4
Fatigue Strength, MPa 56 to 85
97 to 120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 96 to 160
200
Tensile Strength: Ultimate (UTS), MPa 170 to 270
340 to 360
Tensile Strength: Yield (Proof), MPa 83 to 130
270 to 310

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 130
180
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 470
570
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 73
130
Thermal Expansion, µm/m-K 26
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.9 to 12
33
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 22
8.8
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 990
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 16
3.6 to 12
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 180
550 to 720
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
50
Strength to Weight: Axial, points 27 to 43
35 to 37
Strength to Weight: Bending, points 39 to 53
40 to 42
Thermal Diffusivity, mm2/s 43
53
Thermal Shock Resistance, points 9.9 to 16
15 to 16

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
94.2 to 96.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 0.15
Iron (Fe), % 0
0 to 0.35
Magnesium (Mg), % 88.6 to 91.4
3.0 to 4.0
Manganese (Mn), % 0.13 to 0.35
0.2 to 0.5
Nickel (Ni), % 0 to 0.010
0
Silicon (Si), % 0 to 0.3
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0.4 to 1.0
0 to 0.25
Residuals, % 0
0 to 0.15