MakeItFrom.com
Menu (ESC)

AZ91C Magnesium vs. EN AC-47100 Aluminum

AZ91C magnesium belongs to the magnesium alloys classification, while EN AC-47100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AZ91C magnesium and the bottom bar is EN AC-47100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
73
Elongation at Break, % 2.3 to 7.9
1.1
Fatigue Strength, MPa 56 to 85
110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
27
Tensile Strength: Ultimate (UTS), MPa 170 to 270
270
Tensile Strength: Yield (Proof), MPa 83 to 130
160

Thermal Properties

Latent Heat of Fusion, J/g 350
570
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
590
Melting Onset (Solidus), °C 470
560
Specific Heat Capacity, J/kg-K 990
890
Thermal Conductivity, W/m-K 73
130
Thermal Expansion, µm/m-K 26
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.9 to 12
30
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
100

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.6
Embodied Carbon, kg CO2/kg material 22
7.6
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 990
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 16
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 180
170
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 69
53
Strength to Weight: Axial, points 27 to 43
28
Strength to Weight: Bending, points 39 to 53
35
Thermal Diffusivity, mm2/s 43
54
Thermal Shock Resistance, points 9.9 to 16
12

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
81.4 to 88.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
0.7 to 1.2
Iron (Fe), % 0
0 to 1.3
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 88.6 to 91.4
0 to 0.35
Manganese (Mn), % 0.13 to 0.35
0 to 0.55
Nickel (Ni), % 0 to 0.010
0 to 0.3
Silicon (Si), % 0 to 0.3
10.5 to 13.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0.4 to 1.0
0 to 0.55
Residuals, % 0
0 to 0.25