MakeItFrom.com
Menu (ESC)

AZ91C Magnesium vs. C90200 Bronze

AZ91C magnesium belongs to the magnesium alloys classification, while C90200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91C magnesium and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
110
Elongation at Break, % 2.3 to 7.9
30
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
41
Tensile Strength: Ultimate (UTS), MPa 170 to 270
260
Tensile Strength: Yield (Proof), MPa 83 to 130
110

Thermal Properties

Latent Heat of Fusion, J/g 350
200
Maximum Temperature: Mechanical, °C 130
180
Melting Completion (Liquidus), °C 600
1050
Melting Onset (Solidus), °C 470
880
Specific Heat Capacity, J/kg-K 990
370
Thermal Conductivity, W/m-K 73
62
Thermal Expansion, µm/m-K 26
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.9 to 12
13
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
13

Otherwise Unclassified Properties

Base Metal Price, % relative 12
34
Density, g/cm3 1.7
8.8
Embodied Carbon, kg CO2/kg material 22
3.3
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 990
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 16
63
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 180
55
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 69
18
Strength to Weight: Axial, points 27 to 43
8.3
Strength to Weight: Bending, points 39 to 53
10
Thermal Diffusivity, mm2/s 43
19
Thermal Shock Resistance, points 9.9 to 16
9.5

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.1
91 to 94
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 88.6 to 91.4
0
Manganese (Mn), % 0.13 to 0.35
0
Nickel (Ni), % 0 to 0.010
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.3
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0.4 to 1.0
0 to 0.5
Residuals, % 0
0 to 0.6