MakeItFrom.com
Menu (ESC)

AZ91C Magnesium vs. N06920 Nickel

AZ91C magnesium belongs to the magnesium alloys classification, while N06920 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91C magnesium and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
210
Elongation at Break, % 2.3 to 7.9
39
Fatigue Strength, MPa 56 to 85
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
82
Shear Strength, MPa 96 to 160
500
Tensile Strength: Ultimate (UTS), MPa 170 to 270
730
Tensile Strength: Yield (Proof), MPa 83 to 130
270

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 130
990
Melting Completion (Liquidus), °C 600
1500
Melting Onset (Solidus), °C 470
1440
Specific Heat Capacity, J/kg-K 990
440
Thermal Conductivity, W/m-K 73
11
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.9 to 12
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
55
Density, g/cm3 1.7
8.6
Embodied Carbon, kg CO2/kg material 22
9.4
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 990
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 16
230
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 180
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
23
Strength to Weight: Axial, points 27 to 43
24
Strength to Weight: Bending, points 39 to 53
21
Thermal Diffusivity, mm2/s 43
2.8
Thermal Shock Resistance, points 9.9 to 16
19

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
17 to 20
Magnesium (Mg), % 88.6 to 91.4
0
Manganese (Mn), % 0.13 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.010
36.9 to 53.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0