MakeItFrom.com
Menu (ESC)

AZ91C Magnesium vs. N08135 Stainless Steel

AZ91C magnesium belongs to the magnesium alloys classification, while N08135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91C magnesium and the bottom bar is N08135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 2.3 to 7.9
46
Fatigue Strength, MPa 56 to 85
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
80
Shear Strength, MPa 96 to 160
400
Tensile Strength: Ultimate (UTS), MPa 170 to 270
570
Tensile Strength: Yield (Proof), MPa 83 to 130
240

Thermal Properties

Latent Heat of Fusion, J/g 350
310
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 470
1390
Specific Heat Capacity, J/kg-K 990
460
Thermal Expansion, µm/m-K 26
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
39
Density, g/cm3 1.7
8.2
Embodied Carbon, kg CO2/kg material 22
6.8
Embodied Energy, MJ/kg 160
94
Embodied Water, L/kg 990
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 16
210
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 180
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 27 to 43
19
Strength to Weight: Bending, points 39 to 53
19
Thermal Shock Resistance, points 9.9 to 16
13

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 0 to 0.1
0 to 0.7
Iron (Fe), % 0
30.2 to 42.3
Magnesium (Mg), % 88.6 to 91.4
0
Manganese (Mn), % 0.13 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.010
33 to 38
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.2 to 0.8
Zinc (Zn), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0