MakeItFrom.com
Menu (ESC)

AZ91D Magnesium vs. AISI 418 Stainless Steel

AZ91D magnesium belongs to the magnesium alloys classification, while AISI 418 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91D magnesium and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 80
330
Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 2.3 to 4.5
17
Fatigue Strength, MPa 74 to 85
520
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 120 to 140
680
Tensile Strength: Ultimate (UTS), MPa 160 to 220
1100
Tensile Strength: Yield (Proof), MPa 80 to 130
850

Thermal Properties

Latent Heat of Fusion, J/g 350
270
Maximum Temperature: Mechanical, °C 130
770
Melting Completion (Liquidus), °C 600
1500
Melting Onset (Solidus), °C 490
1460
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 78
25
Thermal Expansion, µm/m-K 27
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 58
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
15
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 22
2.9
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 990
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 7.7
170
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 170
1830
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 26 to 34
38
Strength to Weight: Bending, points 38 to 46
29
Thermal Diffusivity, mm2/s 45
6.7
Thermal Shock Resistance, points 9.5 to 13
40

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.0050
78.5 to 83.6
Magnesium (Mg), % 88.7 to 91.2
0
Manganese (Mn), % 0.15 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.0020
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0.35 to 1.0
0