MakeItFrom.com
Menu (ESC)

AZ91D Magnesium vs. EN 1.4542 Stainless Steel

AZ91D magnesium belongs to the magnesium alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91D magnesium and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 2.3 to 4.5
5.7 to 20
Fatigue Strength, MPa 74 to 85
370 to 640
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 120 to 140
550 to 860
Tensile Strength: Ultimate (UTS), MPa 160 to 220
880 to 1470
Tensile Strength: Yield (Proof), MPa 80 to 130
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Maximum Temperature: Mechanical, °C 130
860
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 490
1380
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 78
16
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 58
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 22
2.7
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 990
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 7.7
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 170
880 to 4360
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 26 to 34
31 to 52
Strength to Weight: Bending, points 38 to 46
26 to 37
Thermal Diffusivity, mm2/s 45
4.3
Thermal Shock Resistance, points 9.5 to 13
29 to 49

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.030
3.0 to 5.0
Iron (Fe), % 0 to 0.0050
69.6 to 79
Magnesium (Mg), % 88.7 to 91.2
0
Manganese (Mn), % 0.15 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.0020
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0.35 to 1.0
0