MakeItFrom.com
Menu (ESC)

AZ91E Magnesium vs. AWS E330

AZ91E magnesium belongs to the magnesium alloys classification, while AWS E330 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91E magnesium and the bottom bar is AWS E330.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 2.5 to 6.2
29
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
76
Tensile Strength: Ultimate (UTS), MPa 160 to 260
580

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 500
1350
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 84
12
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10 to 12
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 1.7
8.1
Embodied Carbon, kg CO2/kg material 22
5.4
Embodied Energy, MJ/kg 160
75
Embodied Water, L/kg 990
180

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 25 to 42
20
Strength to Weight: Bending, points 37 to 53
19
Thermal Diffusivity, mm2/s 49
3.2
Thermal Shock Resistance, points 9.0 to 15
16

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
0
Carbon (C), % 0
0.18 to 0.25
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 0 to 0.015
0 to 0.75
Iron (Fe), % 0 to 0.0050
40.7 to 51.8
Magnesium (Mg), % 88.8 to 91.3
0
Manganese (Mn), % 0.17 to 0.35
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.0010
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0