MakeItFrom.com
Menu (ESC)

AZ91E Magnesium vs. AWS ER100S-1

AZ91E magnesium belongs to the magnesium alloys classification, while AWS ER100S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91E magnesium and the bottom bar is AWS ER100S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 2.5 to 6.2
18
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Tensile Strength: Ultimate (UTS), MPa 160 to 260
770
Tensile Strength: Yield (Proof), MPa 96 to 130
700

Thermal Properties

Latent Heat of Fusion, J/g 350
250
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 500
1410
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 84
49
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10 to 12
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.6
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 22
1.8
Embodied Energy, MJ/kg 160
24
Embodied Water, L/kg 990
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4 to 12
130
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 190
1290
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 25 to 42
27
Strength to Weight: Bending, points 37 to 53
24
Thermal Diffusivity, mm2/s 49
13
Thermal Shock Resistance, points 9.0 to 15
23

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
0 to 0.1
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.015
0 to 0.25
Iron (Fe), % 0 to 0.0050
93.5 to 96.9
Magnesium (Mg), % 88.8 to 91.3
0
Manganese (Mn), % 0.17 to 0.35
1.3 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0 to 0.0010
1.4 to 2.1
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.2
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0.4 to 1.0
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5