MakeItFrom.com
Menu (ESC)

AZ91E Magnesium vs. B390.0 Aluminum

AZ91E magnesium belongs to the magnesium alloys classification, while B390.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AZ91E magnesium and the bottom bar is B390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
76
Elongation at Break, % 2.5 to 6.2
0.88
Fatigue Strength, MPa 81 to 85
170
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
29
Tensile Strength: Ultimate (UTS), MPa 160 to 260
320
Tensile Strength: Yield (Proof), MPa 96 to 130
250

Thermal Properties

Latent Heat of Fusion, J/g 350
640
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
580
Melting Onset (Solidus), °C 500
580
Specific Heat Capacity, J/kg-K 990
880
Thermal Conductivity, W/m-K 84
130
Thermal Expansion, µm/m-K 27
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10 to 12
27
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
88

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 1.7
2.8
Embodied Carbon, kg CO2/kg material 22
7.3
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 990
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4 to 12
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 190
410
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 69
51
Strength to Weight: Axial, points 25 to 42
32
Strength to Weight: Bending, points 37 to 53
38
Thermal Diffusivity, mm2/s 49
55
Thermal Shock Resistance, points 9.0 to 15
15

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
72.7 to 79.6
Copper (Cu), % 0 to 0.015
4.0 to 5.0
Iron (Fe), % 0 to 0.0050
0 to 1.3
Magnesium (Mg), % 88.8 to 91.3
0.45 to 0.65
Manganese (Mn), % 0.17 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.0010
0 to 0.1
Silicon (Si), % 0 to 0.2
16 to 18
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0.4 to 1.0
0 to 1.5
Residuals, % 0
0 to 0.2