MakeItFrom.com
Menu (ESC)

AZ91E Magnesium vs. EN 1.5682 Steel

AZ91E magnesium belongs to the magnesium alloys classification, while EN 1.5682 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91E magnesium and the bottom bar is EN 1.5682 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
230
Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 2.5 to 6.2
21
Fatigue Strength, MPa 81 to 85
400
Impact Strength: V-Notched Charpy, J 0.79 to 2.8
68
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
72
Shear Strength, MPa 89 to 150
480
Tensile Strength: Ultimate (UTS), MPa 160 to 260
770
Tensile Strength: Yield (Proof), MPa 96 to 130
570

Thermal Properties

Latent Heat of Fusion, J/g 350
260
Maximum Temperature: Mechanical, °C 130
430
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 500
1410
Specific Heat Capacity, J/kg-K 990
470
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10 to 12
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
7.5
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 22
2.3
Embodied Energy, MJ/kg 160
31
Embodied Water, L/kg 990
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4 to 12
150
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 190
870
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 25 to 42
27
Strength to Weight: Bending, points 37 to 53
23
Thermal Shock Resistance, points 9.0 to 15
23

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
0
Carbon (C), % 0
0 to 0.13
Copper (Cu), % 0 to 0.015
0 to 0.3
Iron (Fe), % 0 to 0.0050
88.7 to 91.1
Magnesium (Mg), % 88.8 to 91.3
0
Manganese (Mn), % 0.17 to 0.35
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.0010
8.5 to 9.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0.15 to 0.35
Sulfur (S), % 0
0 to 0.0050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0